*By Benjamin Braun, Editor-in-Chief, University of Kentucky.*

Our understanding of the importance of processes and practices in student achievement has grown dramatically in recent years, both in mathematics education and education more broadly. As a result, at the K-12 level explicit practice standards are given in the Common Core Mathematics Standards [1] and the Next Generation Science Standards [2] alongside content standards. At the postsecondary level, studies regarding student learning and achievement have revealed the importance of many key practices, and accessible sources exist on this topic [3, 4, 5]. Further, we understand now that not all advanced postsecondary mathematics students are well-served by the same curriculum; for example, pre-service high school mathematics teachers need to develop unique ways of practicing mathematics compared to math majors with other emphases [6, 7]. As discussed by Elise Lockwood and Eric Weber in the previous post on this blog, mathematicians generally appreciate these issues; for readers unfamiliar with mathematical practice standards, their article is a nice introduction to this topic.

All of this leads us to the following question:

*Given the breadth of both content and practices required for students to deeply learn and understand mathematics, what are effective techniques we can use at the postsecondary level to gauge student learning?* Continue reading