-
Opinions expressed on these pages were the views of the writers and did not necessarily reflect the views and opinions of the American Mathematical Society.
Categories
- Active Learning in Mathematics Series 2015
- Advising
- Assessment Practices
- Classroom Practices
- Communication
- Curriculum
- Early Childhood
- Education Policy
- Faculty Experiences
- Graduate Education
- History of mathematics education
- Influence of race and gender
- K-12 Education
- Mathematics Education Research
- Mathematics teacher preparation
- Multidisciplinary Education
- News
- Online Education
- Outreach
- Prison
- Research
- Student Experiences
- Summer Programs
- Task design
- testing
- Year in Review
Archives
- July 2023
- January 2022
- November 2021
- October 2021
- September 2021
- July 2021
- June 2021
- May 2021
- April 2021
- February 2021
- January 2021
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
Contact the Editor
Questions, ideas, and submissions are welcome. Email the Editor-in-Chief to share your thoughts, or leave a comment on the blog.
[contact-form-7 id="3354" title="Contact us."]
Dear Editor,
Yesterday (9/17/19) I have submitted the comment below to the recent AMS blog entry (Pre-Service Mathematics for Elementary (and Secondary) Teachers), yet for some reason it seems to have disappeared into the void. Could you please figure out what has happened? I don’t think I violated any rule with my comment.
Sincerely, Ze’ev Wurman
——————–
I find the first example of fourth-grade teaching nice and convincing. Learning what to leave out is important in teaching, but it strongly relies on the level of the learner. For accomplished learners, throwing in additional albeit peripheral terms or concepts (correctly defined!) might be fun and broaden the horizon. But don’t try to do it when the the topic is barely introduced.
I found the number line example and discussion, however, meaningless and lacking purpose. There are many things one can do on a number line, and all of them will give some kind of patterns. Are those patterns meaningful for instruction? Yes, if they can be analyzed and “explained.” Not really, if they serve just to entertain. This example could be the former for students in late middle school to illustrate formulae such as (a+b)(a-b), but is the latter for fourth grade students in here.
The high school example of graphing, if taught the way described, is indeed deficient. Yet is graphing linear equations commonly taught in such mechanical and mindless way? I doubt it. After all, asking whether a point lies on a line is just another sub-category of teaching linear equations similar to graphing a line using a slope-intercept formula, or deriving the formula of a line crossing two given points. Any half-decent textbook addresses all those sub-categories, and testing for all of them–even in a simple multiple-choice format– is pretty easy and routine. Seems to me the authors here are generalizing based on observing a badly taught class.
Finally, I do agree that strong focus on terminology and formalism, particularly in early grades, if counter-productive. I also agree that all too often teachers incorrectly feel they are not sufficiently “mathematical” if they do not enforce them. Using common–but precise–jargon-free language in early grades would probably go a long way to curing children from disliking mathematics, and it would be wonderful if schools of education paid attention to it. Unfortunately, it seems few ed-school professors seem actually know, let alone teach, the use of precise but jargon-free mathematical language.