Densest Packings of the Smoothed Octagon - Greg Egan

Packing Smoothed Octagons

Which shape is worst of all for packing the plane? That is, which has the lowest maximal packing density? Suppose we demand that our shape be convex and also centrally symmetric: that is, a subset $S \subseteq \mathbb{R}^2$ such that $x \in S$ implies $-x \in S$. Then a certain ‘smoothed octagon’ is conjectured to be the worst. Amazingly, this shape has a 1-parameter family of maximally dense packings, shown in this image created by Greg Egan.

Densest Packing of Regular Octagons - Graeme McRae

Packing Regular Octagons

This is the densest packing of regular octagons in the plane, drawn by Graeme McRae. It is interesting because it is a counterexample to the 2-dimensional analogue of a conjecture made in 3 dimensions by Stanislaw Ulam.

Intersection of {3,3,7} and the Plane at Infinity - Roice Nelson

{3,3,7} Honeycomb Meets Plane at Infinity

The {3,3,7} honeycomb is a honeycomb in 3d hyperbolic space. It is the dual of the {7,3,3} honeycomb shown last time. This image, drawn by Roice Nelson, shows the ‘boundary’ of the {3,3,7} honeycomb: that is, the set of points on the ‘plane at infinity’ that are limits of points in the {3,3,7} honeycomb.

{7,3,3} Honeycomb - Danny Calegari

{7,3,3} Honeycomb

This is the {7,3,3} honeycomb as drawn by Danny Calegari using his program ‘kleinian’. In this image, hyperbolic space has been compressed down to an open ball using the so-called Poincaré ball model. The {7,3,3} honeycomb is built of regular heptagons in hyperbolic space. These heptagons lie on infinite sheets, each of which is a {7,3} tiling of the hyperbolic plane. The 3-dimensional regions bounded by these sheets are unbounded: they go off to infinity. They show up as holes here.

Sierpinski Carpet - Noon Silk

Sierpinski Carpet

To build the Sierpinski carpet you take a square, cut it into 9 equal-sized smaller squares, and remove the central smaller square. Then you apply the same procedure to the remaining 8 subsquares, and repeat this ad infinitum. This image by Noon Silk shows the first six stages of the procedure.