Prüfer 2-Group
This is the Prüfer $2$-group, the subgroup of the unit complex numbers consisting of all $2^n$th roots of unity. It is also called $\mathbb{Z}(2^\infty)$.
This is the Prüfer $2$-group, the subgroup of the unit complex numbers consisting of all $2^n$th roots of unity. It is also called $\mathbb{Z}(2^\infty)$.
This is the {7,3,3} honeycomb as drawn by Danny Calegari using his program ‘kleinian’. In this image, hyperbolic space has been compressed down to an open ball using the so-called Poincaré ball model. The {7,3,3} honeycomb is built of regular heptagons in hyperbolic space. These heptagons lie on infinite sheets, each of which is a {7,3} tiling of the hyperbolic plane. The 3-dimensional regions bounded by these sheets are unbounded: they go off to infinity. They show up as holes here.
This picture, drawn by Anton Sherwood, shows the {7,3} tiling: a tiling of the hyperbolic plane by equal-sized regular heptagons, 3 meeting at each vertex.
This is the {6,3,6} honeycomb, drawn by Roice Nelson. A 3-dimensional honeycomb is a way of filling 3d space with polyhedra or infinite sheets of polygons. Besides honeycombs in 3d Euclidean space, we can also have honeycombs in 3d hyperbolic space, a non-Euclidean geometry with constant negative curvature. The {6,3,6} honeycomb lives in hyperbolic space… and it’s special, because it’s self-dual!
This is the {6,3,5} honeycomb, drawn by Roice Nelson. A 3-dimensional honeycomb is a way of filling 3d space with polyhedra or infinite sheets of polygons. Besides honeycombs in 3d Euclidean space, we can also have honeycombs in 3d hyperbolic space, a non-Euclidean geometry with constant negative curvature. The {6,3,5} honeycomb lives in hyperbolic space, and every vertex has 12 edges coming out, just as if you drew edges from the middle of an icosahedron to its corners.
This is the {6,3,4} honeycomb, drawn by Roice Nelson. A 3-dimensional honeycomb is a way of filling 3d space with polyhedra or infinite sheets of polygons. Besides honeycombs in 3d Euclidean space, we can also have honeycombs in 3d hyperbolic space, a non-Euclidean geometry with constant negative curvature. The {6,3,4} honeycomb lives in hyperbolic space, and each vertex has 6 edges coming out of it, just as if you drew edges from the middle of an octahedron to its corners.
Notices of the AMS · Bulletin of the AMS
American Mathematical Society · 201 Charles Street Providence, Rhode Island 02904-2213 · 401-455-4000 or 800-321-4267
© Copyright , American Mathematical Society · Privacy Statement