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In the paper under review, the author develops a technique for iterating symmetric
extension models of ZF (i.e., Zermelo-Fraenkel set theory minus the axiom of choice
(AC)) in order to construct new models of ZF. (A symmetric model of ZF is an
intermediate model between a ground model M and a generic extension model M [G] of
M , which is determined by a group G of automorphisms of a forcing notion (P,≤) and
a normal filter F of subgroups over G.) As the author mentions in his paper, precursors
to the idea of iterating symmetric extensions can be seen in the works of G. Sageev
[Ann. Math. Logic 8 (1975), 1–184; MR0366668; Ann. Math. Logic 21 (1981), no. 2-3,
221–281 (1982); MR0656794] and G. P. Monro [Fund. Math. 80 (1973), no. 2, 105–
110; MR0347602]. However, in this reviewer’s opinion, the paper under review can be
considered as the first one which addresses in a most specific way the issue of iterating
symmetric extensions.

The paper starts with a well-presented overview of iterated forcing and symmetric
extensions and then delves into the development of the method, which allows the
author to extend the general structure of symmetric extensions (that is, automorphisms
and then filters of groups) to the iteration. He firstly investigates the extension of
automorphisms for two-step iterations (and uses mixing in a substantial way when
defining the iterated automorphisms—Proposition 3.1 of the paper) and then moves
on to the general case, that is, to finite support iterations. A subtle issue is that the
structure of the first symmetric extension acts on the second one and so forth, and
the author carefully addresses these actions by establishing that in his technique the
requirement on each step of the iteration being respected by the previous collection of
automorphisms is a nontrivial requirement.

He then discusses the second crucial point, that is, the extension of filters. A central
issue here is the preservation of the normality of the filters. In order to tackle this
problem, the author makes some additional nontrivial assumptions for combining filters
and the notion of supports, and introduces the notions of Fδ support, excellent support,
Fδ-respected name (and hereditarily Fδ-respected name), and for a symmetric system
〈P,G,F〉 (P a forcing notion, G a group of automorphisms of P, and F a normal
filter of subgroups over G) the notion of P being F-tenacious: a condition p ∈ P is F-
tenacious if and only if there exists H ∈ F which fixes p, i.e., for every π ∈H, πp = p;
P is F-tenacious if and only if there is a dense subset of F-tenacious conditions. The
machinery developed here essentially aims to ensure that in some sense large groups can
be conjugated and remain inside “the iteration of filters”.

The author then continues by applying (in Section 5 of the paper) his methods of
extending the general structure of symmetric models to the iteration to discuss the
class of names and the forcing relation (IS-names and IS-forcing relation, respectively)
identifying the intermediate model (this model, which lies between a ground model V

and its generic extension model V [G], is the author’s class ISGδ = {ẋG | ẋ ∈ ISδ}, where

G⊆ Pδ is a V -generic filter and δ is the length of a symmetric iteration 〈Q̇α, Ġα, Ḟα | α <
δ〉 and 〈Pα,Gα,Fα | α≤ δ〉). In order to facilitate for the reader a better understanding
of how symmetric iterations work, the author gives an example by using his construction

https://mathscinet.ams.org/mathscinet
https://mathscinet.ams.org/mathscinet/search/publications.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=MR&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&review_format=html&s4=MR3922788&s5=&s6=&s7=&s8=All&sort=Newest&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=1
https://mathscinet.ams.org/mathscinet/search/publications.html?refcit=3922788&amp;loc=refcit
https://mathscinet.ams.org/mathscinet/search/publications.html?revcit=3922788&amp;loc=revcit
https://mathscinet.ams.org/mathscinet/search/mscdoc.html?code=03E40%2C%2803E25%29
https://mathscinet.ams.org/mathscinet/search/publications.html?pg1=IID&s1=1075269
https://mathscinet.ams.org/mathscinet/search/institution.html?code=IL_HEBR_EIM
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?&cn=J_Symb_Log
https://mathscinet.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=370420
https://mathscinet.ams.org/mathscinet/pdf/366668.pdf
https://mathscinet.ams.org/mathscinet/pdf/656794.pdf
https://mathscinet.ams.org/mathscinet/pdf/347602.pdf


in order to obtain a model in which all ultrafilters on ω (the set of natural numbers)
are principal (the existence of such a model was originally established by S. Feferman
[Fund. Math. 56 (1964/1965), 325–345; MR0176925]).

The next important step (Section 7 of the paper) is the justification of the term “iter-
ated symmetric extensions”, and indeed the author establishes that iterating symmetric
extensions is in fact the same as doing a symmetric iteration (this is the essence of The-
orem 7.8 in the paper, where it is shown that for every α < δ (where δ is the length of

a symmetric iteration), ISG�α+1
α+1 is a symmetric extension of ISG�α

α ). In order to meet
his goal, he first looks at two-step iterations and examines how the automorphisms and
supports behave when one moves from a P ∗ Q̇-name to a P-name for a Q̇-name, and
then uses his considerations for the formulation and proof of two crucial lemmas (called
‘the factorization lemmas’ in the paper) of which the above main result is a corollary.
In addition, the author proves that if one takes a symmetric extension of a symmetric
iteration, then this could have been done by extending the original symmetric iteration
by the last step (and a subtle point here is that one needs to shrink the automorphism
groups—Theorem 7.9 in the paper).

The author also presents a variant of the general method where some added restric-
tions allow him to access filters which are not necessarily generic for the iteration.

The paper concludes with an example of a symmetric iteration in which the author
subsumes the work of Monro [op. cit.] into this new framework, and shows that for
all n < ω there is a model in which KWPn+1 holds but KWPn fails (this is the result
originally shown by Monro), and also that there is a model of ZF in which KWPn fails
for all n < ω. (KWP denotes the Kinna-Wagner selection principle, which states that for
every family A of sets, each having at least two elements, there is a function F with
domain A such that for all A ∈ A, F (A) is a nonempty proper subset of A; KWP is
equivalent to “Every set can be injected into the power set of an ordinal”; see [T. J.
Jech, The axiom of choice, North-Holland, Amsterdam, 1973; MR0396271]. For n ∈ ω,
KWPn is the statement that for every set X there exists an ordinal α such that X can
be injected into Pn(α)—KWP0 is the axiom of choice and KWP1 is KWP.) Note that it
is an open problem whether KWPα+1 9 KWPα for all α (where KWPα is the statement
that every set X is equipotent with a subset of Pα(η) for some ordinal η).

The author also poses some interesting open questions, one of them being the follow-
ing: “Is iterating symmetric extensions the same as a single symmetric extension?” (In
the context of forcing the answer is in the affirmative: iterated generic extensions can
be presented as a single generic extension.)

Concluding this review, we would like to note that the paper (albeit technical)
is excellently written and special care has been given to explaining all steps (and
motivations) through the development of the required machinery and the new ideas
that are involved. This very interesting article is certainly recommended to the reader.

Eleftherios C. Tachtsis
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