

MR3890460 03D32 03D30 03D78 68Q30

Miyabe, Kenshi (J-MEIJ2)

★Muchnik degrees and Medvedev degrees of randomness notions. (English summary)

Proceedings of the 14th and 15th Asian Logic Conferences, 108–128, World Sci. Publ., Hackensack, NJ, 2019.

Let CR, SR, KLR, and MLR be the classes of computably random, Schnorr random, Kolmogorov-Loveland random, and Martin-Löf random reals, respectively.

Let \leq_s denote the uniform (strong) reducibility of mass problems known as Medvedev reducibility, and let \leq_w denote the non-uniform (weak) version known as Muchnik reducibility.

While it was shown by A. O. Nies, F. C. Stephan and S. A. Terwijn [J. Symbolic Logic **70** (2005), no. 2, 515–535; MR2140044] that $CR \leq_w SR$, the author obtains an interesting counterpoint by showing as his main theorem that $CR \not\leq_s SR$.

Analogously, it was shown by W. Merkle et al. [Ann. Pure Appl. Logic 138 (2006), no. 1-3, 183–210; MR2183813] that MLR \leq_w KLR; the author poses an open problem at the end: Is MLR \leq_s KLR?

The reviewer is pleased to give an affirmative answer as follows. Given a KL-random set $A = A_0 \oplus A_1$, we output bits of either A_0 or A_1 , switching whenever we notice that the smallest possible randomness deficiency (c such that $\forall n (K(A_i \upharpoonright n) \geq n - c)$) increases. Since by [W. Merkle et al., op. cit.] one of A_0 , A_1 is ML-random, switching will occur only finitely often. Thus our output will have an infinite tail that is ML-random, and hence be itself ML-random.

{For the collection containing this paper see MR3890085}

Bjørn Kjos-Hanssen

© Copyright American Mathematical Society 2021