MathSciNet
Mathematical Reviews
Previous | Up | Next
Citations From References: 1 From Reviews: 0
MR3890460 03D32 03D30 03D78 68Q30
Miyabe, Kenshi (J-MEIJ2)
\star Muchnik degrees and Medvedev degrees of randomness notions. (English summary)
Proceedings of the 14 th and 15th Asian Logic Conferences, 108-128, World Sci. Publ., Hackensack, NJ, 2019.

Let CR, SR, KLR, and MLR be the classes of computably random, Schnorr random, Kolmogorov-Loveland random, and Martin-Löf random reals, respectively.

Let \leq_{s} denote the uniform (strong) reducibility of mass problems known as Medvedev reducibility, and let \leq_{w} denote the non-uniform (weak) version known as Muchnik reducibility.

While it was shown by A. O. Nies, F. C. Stephan and S. A. Terwijn [J. Symbolic Logic 70 (2005), no. 2, 515-535; MR2140044] that $\mathrm{CR} \leq_{w} \mathrm{SR}$, the author obtains an interesting counterpoint by showing as his main theorem that CR $\not \leq_{s} \mathrm{SR}$.

Analogously, it was shown by W. Merkle et al. [Ann. Pure Appl. Logic 138 (2006), no. 1-3, 183-210; MR2183813] that MLR $\leq_{w} \mathrm{KLR}$; the author poses an open problem at the end: Is MLR \leq_{s} KLR?

The reviewer is pleased to give an affirmative answer as follows. Given a KL-random set $A=A_{0} \oplus A_{1}$, we output bits of either A_{0} or A_{1}, switching whenever we notice that the smallest possible randomness deficiency (c such that $\left.\forall n\left(K\left(A_{i} \upharpoonright n\right) \geq n-c\right)\right)$ increases. Since by [W. Merkle et al., op. cit.] one of A_{0}, A_{1} is ML-random, switching will occur only finitely often. Thus our output will have an infinite tail that is ML-random, and hence be itself ML-random.
\{For the collection containing this paper see MR3890085\}
Bjørn Kjos-Hanssen
(c) Copyright American Mathematical Society 2021

