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Equilibrium states (or measures) are Borel probability measure invariant under a dy-
namical system and defined by a thermodynamically motivated variational principle:
they maximize “free energy”, the maximum being called (topological) “pressure”, and
one of the leading special cases is a measure of maximal entropy. This notion was first
studied for uniformly hyperbolic dynamical systems where their existence was among
the first things established, and this was found to hold in rather great generality—for
systems which are “entropy-expansive” or “h-expansive”, and when R. Bowen proved
this he followed his numerous examples of h-expansive systems with the “Problem. Find
some differentiable maps which are not h-expansive” [Trans. Amer. Math. Soc. 164

(1972), 323–331; MR0285689].
Uniqueness is a much stronger requirement, and Bowen established this using the

significantly more restrictive specification property, which is rather deeply tied in with
uniform hyperbolicity. Until recently, the most notable step beyond Bowen’s scope of
this approach was probably the much-cited [A. B. Katok, Inst. Hautes Études Sci. Publ.
Math. No. 51 (1980), 137–173; MR0573822], which focused on shadowing rather than
specification.

While there was progress on equilibrium states and their uniqueness, the prospects
for serious progress only brightened recently with the work of V. Climenhaga and D. J.
Thompson [Adv. Math. 303 (2016), 745–799; MR3552538], which took up the Bowen
approach and in an impressive feat of imagination and technical mastery developed it
into a machinery ready for application in nonuniformly hyperbolic dynamics.

The present paper is one of the outstanding exemplars of such application. Its subject
is the geodesic flow on a compact (rank-1) nonpositively curved Riemannian manifold.
The rank-1 condition on the Riemannian metric is that there is a geodesic for which
the tangent vector field is the only parallel Jacobi field, and the (open dense invariant)
regular set is the set of tangent vectors to such geodesics; the singular set is its
complement (and empty only in the well-understood uniformly hyperbolic case).

This kind of geodesic flow is the original exemplar which motivated the development of
the theory of nonuniform hyperbolicity because here one obtains (in a nonuniform way)
complete hyperbolicity. The precursor to this paper is the celebrated [G. Knieper, Ann.
of Math. (2) 148 (1998), no. 1, 291–314; MR1652924], which produced uniqueness of the
measure of maximal entropy for this situation—with quite different tools. The elapse of
two decades underscores the difficulty of the subject and the need for completely new
methods.

Unlike with entropy, uniqueness of equilibrium states is also connected to properties
of the “potential” function that defines the free energy the measure is to maximize.
Accordingly, this paper produces uniqueness results under various assumptions on this
potential function. Specifically, the authors give conditions under which their new
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techniques can be applied to geodesic flows on rank-1 manifolds and demonstrate
that these conditions are satisfied for large classes of potential functions. They show
(Theorem A, obtained from the main result, Theorem 3.1) that a sufficient condition on
(sufficiently regular) potential functions is the presence of a pressure gap: the singular
set does not carry full pressure, meaning that the restriction of the geodesic flow to it
has smaller pressure than on the complement or, equivalently, in total.

As applications, they obtain that for geodesic flows on surfaces, uniqueness holds
for scalar multiples of the geometric potential if the scalar is in the interval (−∞, 1),
which is optimal (Theorem C); indeed, the pressure varies C1 with the scalar factor, and
the equilibrium state is hyperbolic, fully supported, Bernoulli, and the weak∗-limit of
weighted regular closed geodesics. In higher dimensions, they obtain the same result for
scale factors in a neighborhood of 0 (Theorem D), and give examples where uniqueness
holds on all of R. The geometric potential is the Jacobian of the flow in the expanding
direction, and this, which leads to the Sinai-Ruelle-Bowen measure, is the other leading
case of equilibrium states after the measure of maximal entropy, but with the serious
additional challenge that this potential function is usually less regular than needed for
the application of any standard theory. Accordingly, the aforementioned Theorem A
applies to a potential that is either Hölder continuous or a constant multiple of the
geometric potential.

They also give criteria that imply the required pressure gap. The pressure gap occurs,
for instance, whenever the potential is locally constant on a neighborhood of the singular
set (Theorem B), which allows them to give examples for which uniqueness holds on a
C0-open and dense set of Hölder potentials.

It is easy to miss an insight provided here related to the entropy gap. It is a corollary
of Knieper’s uniqueness proof for the measure of maximal entropy [op. cit.] that in the
present context the singular set carries less topological entropy than the regular set—but
this does not produce a direct constructive proof of the entropy gap. In establishing the
needed pressure gap (§8), the present paper produces such an argument: approximate
singular orbit segments by regular orbit segments having the specification property, and
use these to build a collection of orbits with greater topological entropy/pressure than
the singular set. In particular, applied with the potential equal to zero, this work re-
proves the result by Knieper using dynamically direct methods. Boris Hasselblatt
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25. Birkhäuser Verlag, Basel (1995), With an appendix by Misha Brin (1995).
MR1377265

3. W. Ballmann, M. Brin, and P. Eberlein, Structure of manifolds of nonpositive
curvature. I, Ann. Math. (2) (1)122 (1985), 171–203 MR0799256

4. R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, Vol. 169. Springer,
New York (1997). MR1477662

5. R. Bowen, Some systems with unique equilibrium states, Math. Syst. Theory (3)8
(1974/75), 193–202 MR0399413

6. R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math.
(3)29 (1975), 181–202 MR0380889

7. K. Burns and K.Gelfert, Lyapunov spectrum for geodesic flows of rank 1 surfaces,
Discrete Contin. Dyn. Syst. (5)34 (2014), 1841–1872 MR3124716

8. V. Climenhaga, T. Fisher, and D. J. Thompson, Unique equilibrium states for

https://mathscinet.ams.org/mathscinet/search/publications.html?pg1=IID&s1=270790
http://mathscinet.ams.org/mathscinet/pdf/656659.pdf?pg1=MR&amp;s1=0656659&amp;loc=fromreflist
http://mathscinet.ams.org/mathscinet/pdf/1377265.pdf?pg1=MR&amp;s1=1377265&amp;loc=fromreflist
http://mathscinet.ams.org/mathscinet/pdf/799256.pdf?pg1=MR&amp;s1=0799256&amp;loc=fromreflist
http://mathscinet.ams.org/mathscinet/pdf/1477662.pdf?pg1=MR&amp;s1=1477662&amp;loc=fromreflist
http://mathscinet.ams.org/mathscinet/pdf/399413.pdf?pg1=MR&amp;s1=0399413&amp;loc=fromreflist
http://mathscinet.ams.org/mathscinet/pdf/380889.pdf?pg1=MR&amp;s1=0380889&amp;loc=fromreflist
http://mathscinet.ams.org/mathscinet/pdf/3124716.pdf?pg1=MR&amp;s1=3124716&amp;loc=fromreflist


Bonatti–Viana diffeomorphisms, Nonlinearity (6)31 (2018), 2532 MR3816730
9. V. Climenhaga and D. J. Thompson, Unique equilibrium states for flows and

homeomorphisms with non-uniform structure, Adv. Math. 303 (2016), 745–799
MR3552538

10. W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer,
Berlin (1971). MR0460785

11. P. Eberlein, Geodesic flows on negatively curved manifolds. II, Trans. Am. Math.
Soc. 178 (1973), 57–82 MR0314084

12. P. Eberlein, Geodesic Flows in Manifolds of Nonpositive Curvature, Smooth er-
godic theory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math.,
vol. 69, Amer. Math. Soc., Providence (2001), pp. 525–571. MR1858545

13. P. B. Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago Lectures in
Mathematics, University of Chicago Press, Chicago, IL (1996). MR1441541

14. E. Franco, Flows with unique equilibrium states, Am. J. Math. (3)99 (1977),
486–514 MR0442193

15. K. Gelfert and R. O. Ruggiero, Geodesic flows modeled by expansive flows
(2017). In Proceedings of the Edinburgh Mathematical Society MR3938818

16. K. Gelfert and B. Schapira, Pressures for geodesic flows of rank one manifolds,
Nonlinearity (7)27 (2014), 1575–1594 MR3225873
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