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This is the fourth in a series of papers by the authors. An overview of the series was
given in [L. Bartholdi and D. Dudko, Ann. Fac. Sci. Toulouse Math. (6) 26 (2017), no. 5,
1219–1296; MR3746628].

The next two paragraphs give some context and motivation, from the perspective of
this reviewer.

Fix a closed oriented surface S = Sg,n of genus g equipped with a finite set P ⊂ S of n
distinguished points. The mapping class group Mod(S) is now well studied. The Nielsen-
Thurston classification implies a geometrization result. For a precise formulation, see
[B. Farb and D. Margalit, A primer on mapping class groups, Princeton Math. Ser.,
49, Princeton Univ. Press, Princeton, NJ, 2012 (Theorem 13.2 and Corollary 13.3);
MR2850125]. Roughly, this geometrization result asserts that given any f ∈Mod(S),
there is a canonical (possibly empty) minimal multicurve {c1, . . . , cm} invariant by
f such that some power fk sends each complementary component to itself, and is
geometrizable: it is either isotopic to the identity map, or to a so-called pseudo-Anosov
map. It also expresses the restriction of fk to an annular neighborhood of one of
the ci as a power of a Dehn twist. A pseudo-Anosov map is, by definition, affine in
suitable coordinates. Furthermore, there are practical algorithms to find this canonical
decomposition, given an expression of f as a word in the generators; see, for example, the
recent polynomial-time announcement by M. C. Bell and R. C. H. Webb [“Polynomial-
time algorithms for the curve graph”, preprint, arXiv:1609.09392.pdf].

The series of papers by the authors, in this reviewer’s opinion, may be fruitfully
summarized as follows. Imagine now that f : (S, P )→ (S, P ) is no longer a homeomor-
phism, but an orientation-preserving branched covering map of some degree d ≥ 2 for
which the set of branch values lies in P . The Riemann-Hurwitz formula implies that
either g = 1 and f is a covering, or g = 0. In the latter case, f is called a Thurston
map. W. Thurston introduced such maps as combinatorial objects arising naturally in
the classification theory of rational maps acting as dynamical systems on the Riemann
sphere. Just like surface homeomorphisms, Thurston maps f : (S2, P )→ (S2, P ) with
branch values in P may be composed, and their isotopy classes relative to P thus form
a countable semigroup. The analog of conjugacy in this category is called combinato-
rial equivalence, which one can read as conjugacy-up-to-isotopy. The series of papers by
the authors develops, in a systematic way, a parallel theory to that which currently ex-
ists for mapping class groups. Their development requires some significant innovations.
They use recently introduced algebraic objects, called bisets, to encode the homotopy
class of a Thurston map; one may view this as a generalization of the classical Baer-
Dehn-Nielsen theorem encoding mapping classes as group automorphisms. To deal with
decomposing Thurston maps, they need a version of van Kampen’s theorem; this is the
substance of Parts I and II of the series [L. Bartholdi and D. Dudko, Groups Geom.
Dyn. 12 (2018), no. 1, 121–172; MR3781419; “Algorithmic aspects of branched cover-
ings II/V. Sphere bisets and their decompositions”, preprint, arXiv:1603.04059]. The
set of homotopy classes of Thurston maps forms a biset over the mapping class group.
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Its algebraic structure is extremely rich, and this structure features prominently in the
authors’ analysis.

The paper under review gives a characterization of similarly geometrizable Thurston
maps. Here, ‘geometrizable’ is interpreted as admitting a so-called Böttcher expanding
representative. A Thurston map is Böttcher expanding if (i) it is smooth; (ii) there
is a complete orbifold Riemannian metric on the complement of the forward orbits
of periodic branch points which is expanded by f ; and (iii) the first-return map in a
neighborhood of a periodic branch point is locally conjugate to z 7→ zk near the origin,
k ≥ 2. Rational Thurston maps give a wealth of examples. Given a homotopy class
of a Thurston map, a Böttcher expanding representative, if it exists, is unique up to
topological conjugacy (Corollary 1.2); this is an analog of the result that an irreducible
mapping class has, up to topological conjugacy, a unique pseudo-Anosov representative.
Following is the main result of the paper:

Theorem A. Let f : (S2, P )→ (S2, P ) be a Thurston map, not doubly covered by a
torus endomorphism. The following are equivalent:

(1) f is combinatorially equivalent to a Böttcher expanding map;
(2) f is combinatorially equivalent to a topologically expanding map;
(3) the biset B(f) is an orbisphere contracting biset;
(4) f is noninvertible and admits no Levy cycle.

A Levy cycle is a multicurve whose elements are permuted, with each element mapping by
a homeomorphism. A major consequence of Theorem A is the authors’ Corollary B. This
may be fruitfully viewed as a first step in an analog of the aforementioned geometrization
of mapping classes. It asserts that each Thurston map has a canonical Levy obstruction
consisting of a canonical Levy cycle, and a corresponding decomposition. Cutting along
the canonical Levy obstruction and taking first-return maps yields “smaller” Thurston
maps that are either Böttcher expanding, or surface homeomorphisms. (The surface
homeomorphisms could, if one wished, be then further decomposed into geometrizable
pieces—but this is not the authors’ focus.)

The study of Thurston maps doubly covered by torus endomorphisms reduces to
analyzing unbranched maps on tori; the exclusion of such maps in the hypothesis of
Theorem A is typical in this field. In Theorem A, condition (3) is algebraic, while con-
dition (4) is a combinatorial-dynamical condition, which is equivalent to the canonical
Levy cycle being empty.

In the proof of Theorem A, the difficult implication is (4) ⇒ (1). The proof is along
the following lines. The authors first apply the rational canonical decomposition of
f , shown to exist by work of this reviewer [Adv. Math. 158 (2001), no. 2, 154–168;
MR1822682] and enhanced by N. Selinger [Invent. Math. 189 (2012), no. 1, 111–
142; MR2929084]. This involves cutting along another canonical multicurve comprising
obstructions to equivalence to a rational map. This canonical multicurve may be strictly
larger than the canonical Levy multicurve in Corollary B. Condition (4) implies that the
“pieces” in the canonical rational decomposition are equivalent to rational maps, and
are therefore Böttcher expanding. If the canonical Levy obstruction is empty, but its
rational canonical obstruction is nonempty, the authors show by natural but somewhat
delicate estimates how to glue together the expanded metrics on the pieces to obtain a
Böttcher expanding representative.

The authors give applications to numerous natural questions regarding decidability
and realizability of certain types of combinations, e.g. matings.
{For Part III see [L. Bartholdi and D. Dudko, “Algorithmic aspects of branched

coverings III/V. Erasing maps, orbispaces, and the Birman exact sequence”, preprint,
arXiv:1802.03045].} Kevin M. Pilgrim
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(2010). MR2662902 MR2662902
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