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The author gives a sufficient condition for a codimension one foliation on a closed 3-
manifold to be approximated in the Cr topology (r ≥ 1) by another foliation with

positive entropy in the sense of [É. Ghys, R. Langevin and P. G. Walczak, Acta Math.
160 (1988), no. 1-2, 105–142; MR0926526]; this result is also applied to exhibit a
Riemannian foliation that can be approximated by foliations with positive entropy.

The paper is difficult to read due to several typos and minor errors; moreover, some
of the intermediate lemmas seem to be rather classical in the theory of foliations, and
the author offers, in the opinion of this reviewer, unnecessarily complicated proofs. The
paper is aimed at those researchers interested in foliation theory and 1-dimensional
dynamics. The main theorem (Theorem A) can be written in the following equivalent
form:

Theorem A: Let F be a Cr, r ≥ 1, codimension 1 foliation on a closed 3-manifold.
Suppose that there exists a recurrent leaf L ∈ F with two homotopically non-trivial
loops γ, σ with non-trivial homological intersection so that their homotopy classes have
infinite order. Assume that σ has trivial holonomy; then, for all ε > 0, there exists a
foliation Gε with positive geometric entropy and ε close to F in the Cr topology.

In order to prove Theorem A the author uses the fact that Cr codimension one
foliations with positive entropy are precisely those that have a resilient leaf, i.e., a
recurrent leaf with a loop whose holonomy is contractive. This equivalence was proved
for class Cr, r ≥ 2, in [op. cit.], and improved to class C1 by Walczak [Dynamics of
foliations, groups and pseudogroups, IMPAN Monogr. Mat. (N. S.), 64, Birkhäuser,
Basel, 2004; MR2056374]. The author points out that the result does not follow in the
C∞ topology (Remark 4.3), but it seems that he is not considering the usual Whitney
topology, so, as far as I could check, the result seems to be also true in that regularity.

The idea of the proof of Theorem A is straightforward: make a local perturbation
in the transverse direction (in L) to γ so that the holonomy of γ becomes contractive.
The perturbation is made so that both loops in L survive to the perturbation, i.e., they
are still tangent to some leaf L′ of the perturbed foliation. Since L is assumed to be
recurrent, the perturbation can be performed in such a way that L′ must still meet the
basin of attraction of the perturbed holonomy map associated to γ. Thus, L′ becomes
resilient and therefore the geometric entropy of the perturbed foliation must be positive.

Corollary B says that there exists a Riemannian foliation (thus with zero entropy) that
can be approximated by leaves with positive entropy. Take any minimal Riemannian
foliation where all leaves have infinite genus; then Theorem A can be applied to any
leaf.

The first and second sections are devoted to introducing the main results and the
basics on foliations and geometric entropy. The third and fourth sections deal with
the method of local perturbation used to prove the main theorem; for this purpose
two concepts are introduced: the family of jointly splitting charts and the water sliding
diffeomorphisms.

The jointly splitting charts are just foliated charts that must cover a product neigh-
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borhood of σ in a suitable way. Its existence is provided by the classical Reeb stability
theorem applied to compact domains. The author doesn’t point out this observation,
which makes the statement of Theorem A in the paper unnecessarily complicated.

The water slide diffeomorphism is the tool used by the author to formalize the
following idea: let Σ ≡ σ × (−ρ, ρ) be a tubular neighborhood of σ in L; by Reeb
stability there exists a neighborhood of Σ in the ambient manifold that is diffeomorphic
to a product foliation Σ× (−δ, δ) where Σ ≡ Σ× {0}. Choose a Cr diffeomorphism
f : (−δ, δ)→ (−δ, δ) that is Cr tangent to the identity on the extreme points and fixes 0
(this is the transverse coordinate of the water sliding map). Then consider the perturbed
foliation Σ×f (−δ, δ) given also by cylinders but gluing σ×{−ρ}× {t} with σ×{ρ}×
{f(t)}; this foliation can be easily smoothed in its transverse boundary so that, when
changing Σ× (−δ, δ) by Σ×f (−δ, δ), the resulting foliation is still Cr. If δ is sufficiently
small and since 0 is a fixed point of f , the loops σ and γ will survive to the perturbation as
tangent loops. It is classical in 1-dimensional dynamics how to transform the holonomy
map associated to γ (or γ−1) into a contractive one by a perturbation arbitrarily close
to the identity (recall that this can be done sufficiently close to the base point).

Corollary B is not new in the theory of foliations; it is straightforward to choose
two hyperbolic diffeomorphisms of the circle that are close to the identity and so that
some iterates of them play the dynamical Ping-Pong game. Assuming regularity C2 or
higher, the Sacksteder theorem guarantees the existence of a hyperbolic fixed point in
the minimal set. Thus the suspension of this pair of diffeomorphisms over the bitorus is
a foliation with positive entropy and it is Cr close to the product foliation (which is, of
course, Riemannian).

Section five is devoted to the proof of Theorem A and the sixth and last section offers
some comments and problems. In Problem 1, the author asks for examples of foliations
that have zero entropy and that cannot be approximated by positive entropy ones (i.e.,
robustly zero entropy). There are lots of such examples: the simplest ones are manifolds
foliated by compact simply connected leaves; such foliations are rigid by Reeb stability.
Another family of examples are the compact-Hausdorff foliations where the generic leaf
has trivial first homology group; these are also rigid foliations by [D. B. A. Epstein
and H. Rosenberg, in Geometry and topology, 151–160, Lecture Notes in Math., 597,
Springer, Berlin, 1977; MR0501007]. Another example is any suspension over the torus:
any small perturbation of this kind of foliation is still a suspension and therefore its
leaves have polynomial growth (since they are covered by the euclidean plane); therefore
it cannot have resilient leaves. Problem 2 is more interesting, asking for a classification
of robustly zero entropy foliations; this seems a very interesting question open to new
results and examples. Carlos Meniño Cotón
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8. É. Ghys, R. Langevin, and P. Walczak, Entropie géométrique des feuilletages
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