Why care about the American Association for the Advancement of Science as an early-career mathematician?

Photo courtesy of author.

Editor’s note: Guest columnist Luis Sordo Vieira is a PhD mathematician and Postdoctoral Associate at The Jackson Laboratory for Genomic Medicine, a SIAM Science Policy Fellow, and a member of AMS, SIAM, SMB, AACR, and AAAS. I had the pleasure of meeting Luis at the AAAS Annual Meeting in February, and I am so happy he has written this opinion piece about why early career mathematicians should be more engaged with the AAAS.

I received my PhD in 2017 in number theory where I was funded by the National Science Foundation Graduate Research Fellowship. I am now a postdoc working with Dr. Reinhard Laubenbacher on multiscale modeling of disease. I want to share what I see as an underused resource for early-career mathematicians, from the humble perspective of a Latino-American postdoc. That is, I want to share why I think the American Association for the Advancement of Science (AAAS), the largest general scientific community, is a truly valuable resource for us and why we need to get more involved with the AAAS. I will attempt to break it up into three main sections—1. Science! The reason we all do what we do, 2. Networking, and 3. Advocacy.

To be clear, I write this as an individual citizen and I do not represent any company, institution, association, or entity as I write this. Hence, every nonsense statement is my own fault.

Robots built by high school students at AAAS Annual Meeting. Photo courtesy of author.

Science- I just attended my first AAAS annual meeting in Washington, DC. The AAAS annual meeting felt like the grown-up version of watching the magic school bus! I learned that NASA has a publicly available database of biological experiments done in space! I learned that we can now distribute entangled photons over 1200 kilometers by satellite (Yin et al.), and I learned about The Artificial Pancreas project, a device that delivers insulin to patients as-needed based on mathematical modeling. I heard about the wonderful work of Dr. Kristin Swanson—how she is using mathematical methods to study response in glioblastomas, the same type of cancer that took Senator John McCain’s life in 2018. I saw a talk by the first female CERN director, Dr. Fabiola Gianotti, who taught her audience about the discovery of the God Particle and the importance of international collaboration. I met a fantastic group of people that are interested in the role of science communication. I attended sessions on how to better communicate my research, a skill that surely will help me write better grants and papers. I even went to a session on how to improve my LinkedIn profile! And yes, employers actually do use LinkedIn, so if you don’t have one, make sure you get one. I got to see some robots in action, built by high school students! There were sessions on reproducibility and data-sharing, and even a session to bring your kids to learn science. The AAAS Annual meeting made the science world look bigger than ever.

During the Business Meeting of the Mathematical Section, I got to request scientific sessions I would like to see at the next AAAS meeting. I suggested two that are close to my heart: The Mathematics of Gerrymandering and Mathematics for Social Justice. Furthermore, AAAS offers several webinars, some of which are of direct interest to mathematicians. Their flagship publication, Science, is an incredible resource to learn about current policy issues as well as general science and career advice.

Lastly, I would argue that it is critical to see what sort of science you can contribute to that is interdisciplinary, and/or what sorts of positions are available applying your mathematical and analytical skills outside of traditional math departments.   Interestingly, the Annual Report of the AMS from 2015-2016 (Golbeck et al.) shows that out of the 1,746 new US PhD recipients for which employment is known, 1,449 are currently employed in the US, for which 495 (34%) of them end up in Business and Industry and 70 of them are in Government (5%). Thus, it is not at all unlikely that you will end up outside of a math department. The reality is that getting a tenure-track position at a research institution is becoming more difficult. Thus, attending the AAAS annual meeting and reading general science magazines, such as Science and Nature, will give insight into the kinds of positions that will use your skills. I truly believe that the training as a mathematician will allow you to work effectively in several different roles. However, you must not be passive, waiting for opportunities to happen. Be proactive, and expose yourself to the larger science community. I would be willing to argue that mathematics departments across the country should encourage their students to attend general scientific meetings. Not only will this benefit the students, but a mathematics community more connected with the larger scientific community will benefit the mathematics community itself.

Networking– Within three days at the AAAS annual meeting, I met Dr. Deborah Lockhart, the Deputy Assistant Director of the Assistant Director for Mathematical and Physical Sciences at the NSF, Dr. James Crowley, Executive Director at SIAM, Dr. Jennifer Pearl, the Director for the AAAS Science and Technology Policy Fellowship (if you don’t know about this program, take a break from this blog and go look at it!) and Dr. Karen Saxe, Director of The AMS Office of Government Relations. To be clear, when I say meet, I mean I had one-on-one conversations with them about what I want and need as a young mathematician. I even got the chance to personally thank Dr. France Cordova, Director of the NSF, for the service that the NSF provides graduate students through their Graduate Research Fellowship Program. I met several scientists working in diverse areas of science. As transdisciplinary collaborations are becoming increasingly valuable to funding organizations and science as a whole, this is a perk that is incredibly valuable for today’s science world. I also got the chance to meet several postdocs that now work in the federal government through the Science and Technology Policy Fellowship program. I was thoroughly impressed by the posts that these fellows now hold. I will give two examples, although I met several others. Dr. Anita Burgos works in the office of Senator Tina Smith (D-MN) and helps her draft legislation. Dr. Zulmarie Perez Horta is a Program Officer at the NIH. Both of these fantastic scientists now have an excellent background on how the federal government works, an outstanding understanding of the grant process, and an incredible ability to communicate. These are transferable skills for any job that you might want in the future.

White House science adviser Kelvin Droegemeier gave his inaugural public address at the 2019 AAAS Annual Meeting. Credit: AAAS, Robb Cohen Photography & Video.

Advocacy– Lastly, I wanted to talk about what I believe to be one of the most significant and important perks of the AAAS. We live in a world where facts are often confounded with opinions and feelings. We feel the pressure of existential problems for our generation—climate change, measles outbreaks, discriminatory usage of AI, etc. It is critical for scientists to stand up for what we believe. Through our training, we have the analytical expertise to dispel myths, to explain the difference between correlation and causation and to understand and explain p-hacking. We have the ability to literally create new math. Our training has led us to develop skills that can literally save the world. It is here that I ask for your help. The AAAS offers significant resources for science advocacy. Critically, AAAS has over 120,000 members, many of whom are actively participating in science advocacy. Not too long ago, I went to a talk by Dr. Jeff Hasty at UCSD on engineering genetic clocks through the principle of quorum sensing. Loosely speaking, quorum sensing is when a population reacts once a certain threshold of numbers of members is reached. To me, the principle of quorum sensing applies to science advocacy, and thus why the number of members of the AAAS is a significant resource. The AAAS offers several tangible resources on science advocacy, policy and communication. This includes several workshops for communication, a communications tool-kit, fellowships to participate in science policy at the federal level (one of these co-sponsored by the AMS), fellowships to advance the public knowledge of science, and a workshop for graduate students to learn about policy and advocacy. The AMS sponsors math graduate students and faculty for these fellowships and the Office of Government Relations website gives application and deadline information as well as about former fellows that their experiences.

Several extremely influential mathematicians came to me after the meeting and expressed how much they value my opinion. My voice was heard at the table, and yours should be heard too. You know what is best for your future, your training, and opportunities that will help you advance. I suggest all young mathematicians attempt to take an active role in the decision-making processes in our scientific societies. We know how we best receive information and process it (I get a lot of my information through the usage of social media, don’t you?). We know that not all of us want to pursue a traditional path in a mathematics department, and hence, we would like alternative training and skills that are readily transferable. Previous generations are willing to listen, and we are willing to speak. Will you join me?

About Karen Saxe

Karen Saxe is Director of the AMS Office of Government Relations which works to connect the mathematics community with Washington decision-makers who affect mathematics research and education. Over many years she has contributed much time to the AMS, MAA, and AWM, including service as vice president of the MAA and in policy and advocacy work with all three. She was the 2013-2014 AMS Congressional Fellow, working for Senator Al Franken on education issues, with focus on higher education and STEM education. In Minnesota she has served on the Citizens Redistricting Commission following the 2010 census and serves on the Common Cause Minnesota Redistricting Leadership Circle. She has three children and, when not at work especially enjoys being with them and reading, hiking and sharing good food and wine and beer with family and friends.
This entry was posted in Advocacy, Communicating Mathematics, Graduate students and tagged . Bookmark the permalink.

3 Responses to Why care about the American Association for the Advancement of Science as an early-career mathematician?

  1. Amy Corwin says:

    I was moved and delighted to read your articulate article. Thank you for writing it and posting it.

    Consider a shorter version for the inside the back page of Science magazine. I have not seen many from mathematicians. And you work at the intersection of math and the biological sciences where AAAS is most concentrated.

  2. Catherine A. Roberts says:

    Luis — thank you! This is a wonderful post and you make such important points. I hope every early-career mathematician has an opportunity to read this.

Comments are closed.