Visual Insight
http://blogs.ams.org/visualinsight
Mathematics Made VisibleSat, 30 Jul 2016 01:51:39 +0000en-UShourly1https://wordpress.org/?v=4.5.3Labs Septic
http://blogs.ams.org/visualinsight/2016/07/15/labs-septic/
http://blogs.ams.org/visualinsight/2016/07/15/labs-septic/#respondFri, 15 Jul 2016 01:00:28 +0000http://blogs.ams.org/visualinsight/?p=2722septic surface is one defined by a polynomial equation of degree 7. The Labs septic, drawn above by Abdelaziz Nait Merzouk, is a septic surface with the maximum possible number of ordinary double points: that is, points where it looks like the origin of the cone in 3-dimensional space defined by \( x^2 + y^2 = z^2\).]]>http://blogs.ams.org/visualinsight/2016/07/15/labs-septic/feed/0Barth Decic
http://blogs.ams.org/visualinsight/2016/07/01/barth-decic/
http://blogs.ams.org/visualinsight/2016/07/01/barth-decic/#respondFri, 01 Jul 2016 01:00:25 +0000http://blogs.ams.org/visualinsight/?p=2666decic surface is one defined by a polynomial equation of degree 6. The Barth decic, drawn here by Abdelaziz Nait Merzouk, is the decic surface with the maximum possible number of ordinary double points: that is, points where it looks like the origin of the cone in 3-dimensional space defined by \(x^2 + y^2 = z^2 \).]]>http://blogs.ams.org/visualinsight/2016/07/01/barth-decic/feed/0Small Stellated Dodecahedron
http://blogs.ams.org/visualinsight/2016/06/15/small-stellated-dodecahedron/
http://blogs.ams.org/visualinsight/2016/06/15/small-stellated-dodecahedron/#commentsWed, 15 Jun 2016 01:00:57 +0000http://blogs.ams.org/visualinsight/?p=2566small stellated dodecahedron, drawn here using Robert Webb's Stella software, is made of 12 pentagrams, or 5-pointed stars, with 5 pentagrams meeting at each vertex. ]]>http://blogs.ams.org/visualinsight/2016/06/15/small-stellated-dodecahedron/feed/8Discriminant of Restricted Quintic
http://blogs.ams.org/visualinsight/2016/06/01/discriminant-of-restricted-quintic/
http://blogs.ams.org/visualinsight/2016/06/01/discriminant-of-restricted-quintic/#commentsWed, 01 Jun 2016 01:00:38 +0000http://blogs.ams.org/visualinsight/?p=2522Greg Egan shows the set of points \((a,b,c)\) for which the quintic \(x^5 + ax^4 + bx^2 + c \) has repeated roots. The plane \(c = 0 \) has been removed. This surface is connected to involutes of a cubical parabola and the discriminant of the icosahedral group.]]>http://blogs.ams.org/visualinsight/2016/06/01/discriminant-of-restricted-quintic/feed/2Discriminant of the Icosahedral Group
http://blogs.ams.org/visualinsight/2016/05/15/discriminant-of-the-icosahedral-group/
http://blogs.ams.org/visualinsight/2016/05/15/discriminant-of-the-icosahedral-group/#respondSun, 15 May 2016 01:00:26 +0000http://blogs.ams.org/visualinsight/?p=2534Greg Egan, shows the 'discriminant' of the symmetry group of the icosahedron. This group acts as linear transformations of \(\mathbb{R}^3\) and thus also \(\mathbb{C}^3\). By a theorem of Chevalley, the space of orbits of this group action is again isomorphic to \(\mathbb{C}^3\). Each point in the surface shown here corresponds to a 'nongeneric' orbit: an orbit with fewer than the maximal number of points. More precisely, the space of nongeneric orbits forms a complex surface in \(\mathbb{C}^3\), called the discriminant, whose intersection with \(\mathbb{R}^3\) is shown here.
]]>http://blogs.ams.org/visualinsight/2016/05/15/discriminant-of-the-icosahedral-group/feed/0Involutes of a Cubical Parabola
http://blogs.ams.org/visualinsight/2016/05/01/involutes-of-a-cubical-parabola/
http://blogs.ams.org/visualinsight/2016/05/01/involutes-of-a-cubical-parabola/#respondSun, 01 May 2016 01:00:26 +0000http://blogs.ams.org/visualinsight/?p=2469Marshall Hampton shows the involutes of the curve \(y = x^3\). It lies at a fascinating mathematical crossroads, which we shall explore in a series of three posts.]]>http://blogs.ams.org/visualinsight/2016/05/01/involutes-of-a-cubical-parabola/feed/0Barth Sextic
http://blogs.ams.org/visualinsight/2016/04/15/barth-sextic/
http://blogs.ams.org/visualinsight/2016/04/15/barth-sextic/#commentsFri, 15 Apr 2016 01:00:13 +0000http://blogs.ams.org/visualinsight/?p=2439sextic surface is one defined by a polynomial equation of degree 6. The Barth sextic, drawn above by Craig Kaplan, is the sextic surface with the maximum possible number of ordinary double points: that is, points where it looks like the origin of the cone in 3-dimensional space defined by \(x^2 + y^2 = z^2\).]]>http://blogs.ams.org/visualinsight/2016/04/15/barth-sextic/feed/4Rectified Truncated Icosahedron
http://blogs.ams.org/visualinsight/2016/04/01/rectified_truncated_icosahedron/
http://blogs.ams.org/visualinsight/2016/04/01/rectified_truncated_icosahedron/#respondFri, 01 Apr 2016 01:00:30 +0000http://blogs.ams.org/visualinsight/?p=2355rectified truncated icosahedron is a surprising new polyhedron discovered by Craig S. Kaplan. It has a total of 60 triangles, 12 pentagons and 20 hexagons as faces.]]>http://blogs.ams.org/visualinsight/2016/04/01/rectified_truncated_icosahedron/feed/0Zamolodchikov Tetrahedron Equation
http://blogs.ams.org/visualinsight/2016/03/15/zamolodchikov-tetrahedron-equation/
http://blogs.ams.org/visualinsight/2016/03/15/zamolodchikov-tetrahedron-equation/#commentsTue, 15 Mar 2016 01:00:10 +0000http://blogs.ams.org/visualinsight/?p=2225J. Scott Carter and Masahico Saito, is a fundamental law governing surfaces embedded in 4-dimensional space. It also arises purely algebraically in the theory of braided monoidal 2-categories.]]>http://blogs.ams.org/visualinsight/2016/03/15/zamolodchikov-tetrahedron-equation/feed/4Clebsch Surface
http://blogs.ams.org/visualinsight/2016/03/01/clebsch-surface/
http://blogs.ams.org/visualinsight/2016/03/01/clebsch-surface/#respondTue, 01 Mar 2016 01:00:50 +0000http://blogs.ams.org/visualinsight/?p=2321Clebsch surface, created by Greg Egan. The Clebsch surface owes its fame to the fact that while all smooth cubic surfaces defined over the complex numbers contain 27 lines, for this particular example all the lines are real, and thus visible to the eye. However, it has other nice properties as well.]]>http://blogs.ams.org/visualinsight/2016/03/01/clebsch-surface/feed/0