Did you know that a group of six women programmed the first ever electronic computer? Just one of the interesting facts I’ve learned this March, and in honor of Women’s History Month I wanted to give a well-deserved tip of the hat to math blogs about, by, and for women.

Several years ago on this very blog, we posted about Grandma got STEM, a blog maintained by Rachel Levy of Harvey Mudd College. After more than two years, I am happy to report that the blog is still actively receiving submissions about our badass foremothers in STEM, many of whom are mathematicians. Recently there have been profiles of Else Hoyrup, a Danish topologist turned women’s science historian, and Fannie M. Gordon, the woman behind Lanczos’ algorithm.

Obviously, a major part of what makes profiles of women in math so compelling is that they seem to be relatively rare. And while women have certainly gained a larger footprint in the field — according to the most recent AMS annual survey nearly 30% of 2014-2015 math PhD recipients were female — there are still serious hurdles to clear.

Some of these obstacles are discussed in great detail in award-winning mathematician Izabella Laba’s blog, The Accidental Mathematician. Laba writes thought provoking pieces about gender policitics in the mathematical sciences. In her most recent post Laba discusses how matters of gender discrimination shape the world of math conferences, a topic also covered very eloquently by blogging physicist Athene Donald (not a mathematician, per se, but one of our sisters in STEM nonetheless).

On calling attention to the problems at hand, Laba says, “We sure talk about gender. In terms of pure volume, we may be close to the saturation point already. It is not clear that this is helping.” Rather, her post is a call to action for the men and women of mathematics to treat fairly the “women and minorities who are absent, hypothetical, or nonexistent,” as well as those women who are already there, by considering our implicit biases.

And sometimes, as male mathematician and veteran blogger Jordan Ellenberg expresses so poignantly, seeing the gender imbalance swing in the opposite direction allows us to see the subtle biases that we — otherwise good people — allow to inform our actions.

To all of the pioneering women in math who have done so much to advance the field and our collective standing it it, we are proud to walk in your well-heeled footsteps. Hear more about the ladies of ENIAC on Science Friday, keep up with the latest gossip on twitter with #womeninSTEM, and if you see a mathematician hard at work today, be sure to tell her you admire her work.

]]>Like many mathematicians, I’m pretty lukewarm about Pi Day. I’m generally a scrooge about most holidays, but I do appreciate the fact that Pi Day has given me a chance to write about some cool math topics I probably wouldn’t have otherwise. Last year I wrote about π(x), the prime counting function, and this year, I wrote about continued fractions, which get cooler every time I learn more about them. (I can’t help but brag about the fact that Mike Lawler did some continued fractions with his kids after reading my post. I love seeing my work in action!)

Of course, there were quite a lot of nice Pi Day posts around the math blogsphere this year. Pat Ballew wrote about pi and the Kruskal count, a fun mathemagic trick. JoAnne Growney posted at at her math poetry blog about Pilish, the “language” whose word lengths follow the digits of pi. Alex Bellos wrote a short post in Pilish for the Aperiodical. Dick Lipton and Ken Regan took the opportunity to discuss another pi: products. Specifically, how much does integer multiplication cost? Rafael Irizarry wrote about empirical evidence that pi is a normal number for Simply Statistics

The Aperiodical pulled out all the stops for Pi Day. If I counted correctly, they posted 15 articles about pi this past week. I especially enjoyed their first one, a video of mathematicians using various methods, from measuring the period of a pendulum to filling water balloons, to estimate pi. I also appreciated Katie Steckles’ rumination on the appropriate time to celebrate pi in several different timekeeping systems. Aperiodical contributor Christian Perfect bought the domain three.onefouronefivenine.com, where you can scroll down and see lots and lots of digits of pi.

Education-focused blogs Math Munch, Let’s Play Math, and Moebius Noodles used the occasion to publish fun, accessible posts about pi. Stuart Price, inspired by Joshua Bowman, wrote about π-th roots of unity, which relate quite nicely to continued fractions. Mike Lawler also used that activity with his kids.

I understand why math bloggers write about Pi for Pi Day, and they write a lot of neat stuff. General interest news media, however, can get weird about it. On the one hand, it is nice for math to get a little bit more focus than it usually does. On the other hand, the stories often divide the world into “us” and “them”: regular folks and freaks who like reciting numbers. Is there really no such thing as bad publicity? As Dan Meyer said on Twitter,

@lodish Publicity that promotes an image of math as obsessed with cryptic numerology and obscure rituals is bad publicity. My opinion.

— Dan Meyer (@ddmeyer) March 13, 2015

Some big media outlets did pretty well on Pi Day. Phil Plait wrote a fun piece for Slate, Alex Bellos wrote a few nice posts for the Guardian, including one about the first person to use the letter π for circles, and Manil Suri wrote an op-ed in the New York Times. Gary Antonick wrote a very nice post for the New York Times Wordplay blog. He focused on Euler’s identity and included an excellent new-to-me video explaining how exponentiation works when you start messing around with complex exponents.

Daniel Ullman wrote a good article for the Conversation that includes the fantastic tongue-in-cheek suggestion to celebrate Earth Day by eating foods that start with the letter ‘e’. Or, of course, we could do that to celebrate *e* Day on February 7th (2/7 for the US and Belize), July 2nd (2/7 for most of the world), or September 28 (the 271st day of the year in non-leap years, 272nd in leap years—either would be appropriate as *e* starts 2.718). Steven Strogatz wrote a lovely article about the Pi Day dilemma for the New Yorker. Pi is an important number, and it really is stunning that is appears in so many places. It’s frustrating when our attempts to talk about it are reduced to lists of digits.

Some big news outlets…didn’t do so well. *Time* gave us Pi Day Deals, Freebies, and Events for Math Lovers and Haters Alike. Select quote: “There are plenty of deals meant to appeal to C students who hated math too.” Thanks for making sure we “normal people” know that it’s still OK to openly despise math! (Can you imagine St. Patricks Day deals explicitly marketed to people who hate the Irish? It’s not a good analogy because the Irish are people and math is an idea, but it’s pretty odd to focus holiday coverage on people who hate the idea behind the holiday.) *USA Today* asked us to watch these stunning videos of kids reciting 3.14. The headline is bizarre, but the kids are lovely, and if they enjoy memorizing the digits of pi, good for them. I just wish the coverage had less gawking at non-mathematical activities in it.

Next Pi Day, 3/14/16, is a better approximation of pi than 3/14/15. I guess we’ll be meeting back in a year for another “Pi Day of the century”!

]]>When I was in graduate school I mostly worked really hard all the time. Like we all do, right? But occasionally, my officemates and I would get a bit punchy, and the need to blow off steam would momentarily supersede our desire to compute Dirichlet characters. At these moments, one of our favorite diversions was mathematical pictionary. Basically like regular pictionary, this game had us drawing the names of a famous theorems, concepts, or mathematicians. It provided hours of fun, and a gallery of *incredibly* bad math pictures. See example above. Happily, I was reminded of this recently when I was hanging out at one of my favorite blogs, Math with Bad Drawings.

The blog is written by Ben Orlin, a math teacher in Birmingham, England (so I suppose he’s actually a maths teacher). Orlin wields a dry-erase marker like a young Picasso, writes incredibly thoughtful posts about his observations in life as a teacher and learner of mathematics, and the product is something that is part narrative and part long-form comic. He says, “you could call this a “math blog,” or a “teaching blog,” but I would call it a blog about owning up to weakness and drawing strength from successes, however transient or trivial they may seem.”

In one recent post Orlin gives a thoughtful answer to the controversial question: Why do we pay pure mathematicians? Aside from the fact that pure mathematicians are really good at equations — even the really long ones — Orlin draws out some important ideas, namely, how essential the study of pure math is to the world we live in. Had those 19th century mathematicians not become obsessed with provability, we wouldn’t have iPhones today. Beyond the massive life-changing breakthroughts he points out that it’s also just really nice to look at, “come for the pretty patterns, stay for the cosmic insights.”

In an older, but equally thoughtful post, Orlin explains what it feels like to be bad at math. No surprise, it feels bad. But Orlin explores where the badness comes from and what people can do to cope with those hurt feelings.

Some posts are just a series of clever jokes (yes, math jokes exist) that seem to hit really close to home, like “Math Experts Split the Check,” or “A Math Professor Consults On A Hollywood Movie,” and my favorite, “The Student Every Teacher Dreams About.”

You can check out the archives on Math With Bad Drawings, and follow Orlin on Twitter @benorlin. And while you’re over on Twitter, let me know if you figured out the pictionary puzzles @extremefriday.

]]>I’m teaching topology for the first time this semester, so I’ve been poking around the blogosphere for ideas of different ways to explain some of the ideas in this class to my students.

Luckily, right before I started the semester, I ran across this post on College Math Teaching: Bad notation drove me nuts….(and still does). Quick, what’s the area of a circle? πr^{2}. What’s the fundamental group of the circle? ℤ. Those aren’t the same circles. The circle with fundamental group ℤ has area 0. It’s the *boundary* of the circle with area πr^{2}. Unlike the author of College Math Teaching, I wasn’t confused about the circle when I first saw it in topology, and it never occurred to me that that particular example of sloppy nomenclature could be a stumbling block for my students. I think that reading that post has helped me be more thoughtful and careful about notation and terminology when I’m teaching this class.

Another post that has shaped my thinking about teaching upper-level undergraduate classes is a guest post on the AMS math education blog: Mathematics professors and mathematics majors’ expectations of lectures in advanced mathematics. The short version: those expectations are different. For example, I (and apparently many other math teachers) think that leaving some details of proofs to students can be a good way for them to solidify their understanding of a proof in class. After reading that post, I’ve decided to include more of those details in classes if I think they’re important, and if I want students to fill in details on their own, I am having them do it in class or on homework.

I’m teaching algebraic topology, and the author of College Math Teaching is teaching point-set topology, so there aren’t a lot of posts directly about the material I’m teaching, but I’m enjoying a feeling of camaraderie when I read their posts about their class this semester. My students are fairly experienced proof writers at this point, but the author’s students are not. I can’t imagine trying to teach some of these concepts at the same time as teaching proofs writing! On a companion blog, there are course notes for the author’s class. I could probably use some brushing up on the separation axioms. I’ve been interested in counterexamples in topology recently because I wrote about the π-Base, an online version of the classic Steen and Seebach book. College Math Teaching has nice posts about two interesting counterexamples, the Alexandroff Square and the Topologists’ Sine Curve.

I’ve also found Math ∩ Programming, Jeremy Kun’s blog, to be valuable for my teaching. I read over his post about the fundamental group at the beginning of the semester when I was starting to teach it. I’m doing a lot of my teaching from Munkres, which can be a bit too formal at the expense of intuition, so seeing an explanation that is a little more idea-focused is helpful. Kun is a very good math writer, and I’m sure his primers would be useful for students and teachers of other subjects as well. There’s plenty more to enjoy in his blog, and I can’t help but point you to his guest post on Baking and Math. After all, torus knot baklava is much tastier than programming. (Sorry, programmers. I’m never going to be as interested in programming as I am in pastry.)

I recently ran across The Geometric Viewpoint, a blog about geometry and topology aimed at undergraduates and written by Colby College faculty and students. I thought about having some writing assignments in my topology class and ultimately decided against it, but maybe reading the student posts will make me think about it more for next time.

There are a few defunct or rarely updated blogs I’ve found useful. Sketches of Topology has some interesting topology constructions with great illustrations. Dan Ma’s Topology Blog has accessible posts about point-set topology. I haven’t seen much about undergraduate algebraic topology in the blogosphere, though.

Any other recommendations for topology blogs that focus on undergraduate topology?

]]>It is undeniable: podcasts are having a moment. The burgeoning podcast culture being shaped by the Radio Labs, 99% Invisibles, and Freakanomics Radios of the world, has gotten me thinking about some of the particular hardships of adapting pure mathematics to a strictly audio setting. As a subject so rich in notation and abstraction, it always struck me as ill-suited for ears-only consumption. But as it turns out, I was way wrong. So, even though this is a blog on math *blogs*, I want to take a quick detour into the world of mathematics for your ears.

This week I had occasion to speak to two mathematicians who have successfully navigated two very different realms of audio mathematics: the podcast and the local radio show. According to Samuel Hansen, the director and producer of several great math podcasts including Strongly Connected Components and the kickstarter success-story, Relatively Prime, the key to successful mathematical audio is to tell a story. “The way you do it is through metaphor,” he says, “focus on the things that radio and audio really are good at, which is sparking people’s imaginations.”

Instead of trying to use a podcast to teach heavy technical concepts, Hansen thinks we would perhaps be better served with a little bit of levity and mathematical entertainment, “we need people to think about mathematics not just as a school based or education based activity,” he says, “telling someone a story that is not educational but *is* interesting is a great way to do that.”

For Beth Malmskog, an assistant professor at Villanova University and former host of “Fort Collins Colorado’s premiere music and call-in math puzzle show,” the key was always to give people a relatable story — no matter the cheese factor. “Even if the story is dorky, you have to give them some kind of objects to hang the whole thing on so they can remember what’s happening,” says Malmskog.

As part of her radio show, Malmskog would offer up mathematical puzzles to her local listeners, who were not necessarily mathematicians. “If you’re going to actually get people to solve or understand some mathematical thing, you almost have to turn it into a puzzle,” she says, “if people haven’t spent their whole lives studying math and they haven’t built little personalities of their own for the objects, you’re just speaking gibberish.”

And, as someone who has on several occasions flung both hands dramatically towards the sky, tossed my head back and shouted “just tensor with Q_p and *LIFT* the whole thing,” I get it. Whether it makes sense or not, we fill our math with secret relationships and personalties all the time.

One point that Malmskog and Hansen were both quick to make: never assume that your audience is full of mathematicians. Turns out all kinds of people love to read, hear, and learn about math, which is something we can definitely get behind.

To learn about a whole slew of great math podcasts, check out Samuel Hansen’s guest post over at mathbabe.org. And now that you’ve started thinking about this, what sort of stories have you always wanted to tell about math? And what tricks do you use to explain your cool math ideas to the non-experts?

]]>Oestreicher says she hated math in high school but eventually decided that she was just going along with the crowd. Her undergraduate degree was in theater, and she spent some time in grad school working as the coordinating director of Math Thespian Presentations at the University of Minnesota. I think the combination of a math-averse past and her experience in the arts give her a perspective not seen on many math blogs.

Oestreicher recommends the Elegance Series to new blog readers. Unsurprisingly, it’s about elegance in mathematical proofs. What is it? Why do we like it? Where does it come from? Many other mathematicians have written about this topic, of course, but I thought she had some interesting things to add. In one post, she compares mathematical elegance to elegance in fashion. “Elegance is a social construct, an adjective to describe a simple, well designed, full-package beauty.” She asks, “Is social elegance reserved for the rich? Is mathematical elegance reserved for the mathematically advanced?” As my answer to the question of whether math is only for “math people” (of course not!) has been one of my hobby horses lately, I was interested in the connection she made between that idea and the idea of elegance.

Browsing through the archives, I also came across some posts about proofs, belief, and communicating mathematics. One post in the proof series offered an unusual perspective about the opaque proofs we read in journal articles.

I used to think bitter thoughts about some author’s proofs. Then my real analysis professor said something fascinating. I think he may have been quoting someone else (any one out there know who he was quoting?). A masterpiece of architecture would never be opened to the public with it’s scaffolding still up. You are to see the final product and wonder at it’s beauty as apposed to analyzing how it was built. For the same reason mathematicians remove the scaffolding from their proofs once they are complete. They do the final finish work and publish incomprehensible and beautiful proofs.

Because mathematical proof is about communication and context (the proof may change drastically based on the audience), I don’t think I agree fully. I think authors should leave more of the scaffolding up for readers. But sometimes it’s not clear what is scaffolding and what is the building. A related issue, the right way to talk about math with non-mathematicians, appears in a post about “Speaking Math.”

With over 7 years of archives, there are quite a few other series and freestanding posts about mathematicians (both social and antisocial) and the mathematics hidden in everyday life, including Sudoku, video games, and art. As Oestereich’s research is related to climate science, there is also an EcoMathematics category. I’m looking forward to reading more.

]]>The great state of California, whose Department of Public Health recently made public all of their data surrounding childhood immunization levels, can help us begin to answer this question. Specifically, they’ve posted a child-by-child count of non-immunized California Kindergarteners who have opted out of vaccinations through the state’s Personal Belief Exemption (PBE) program. To get a lay of the land, we’ll start with a very straightforward plot directly from their 2014-2015 Academic Year Annual Immunization Report.

So it’s pretty clear that the rate of PBE’s has gone up since 2010. But as with any simple visual, this one raises more questions than answers. For example, we still can’t quite see where the high rates of PBE’s are coming from. From this information, it’s possible that there’s one gigantic mega-school housing all of the unvaccinated kiddos. And this is an important distinction to make, since what we know of herd immunity says that risks for illness increase when large numbers of unvaccinated kids interact regularly. In case you missed it, Evelyn Lamb gave a great run-down on how diseases spread even in populations that are *partially* immunized.

So, beyond this basic distribution question, it would also be interesting to see how PBE rates look across types of school. For example, are the rates at small schools and large schools comparable? Can we see consistencies across school types within a district? To help us tease out some of the finer details from the mountain of raw data, Kieran Healy at the blog Crooked Timber turned it into some helpful eye-candy.

What we can see here is that larger schools actually tend to have lower PBE rates, that is, they have *higher* rates of immunization. So the unvaccinated-mega-kindergarten theory is out. This plot also gives a pretty clear answer in the public vs private school question. If you study the data points closely, it also shows some interesting inconsistencies within districts. Healy notes,

“The concentration of PBEs in smaller schools is evident, as is the concentration in private schools. Note that regions with high PBE schools can still show a lot of heterogeneity. For example, consider schools in Berkeley. On the one hand it is home to the school with the second-highest PBE rate in the state. On the other hand, six of its fifteen other schools have PBEs of zero, two more are at three percent or lower, and the remainder range from six to sixteen percent PBEs.”

Finally, we might want to get a more granular sense of what types of schools we’re dealing with. Whether parochial private schools and charter private schools have comparable rates, and what sort of public schools have large numbers of unvaccinated kids.

I’ll let you draw your own conclusions from this. But I think this data paints an interesting picture of the vaccination culture — at least in California. Check your own state to see if they make their immunization data available to play with, and if you can’t find your own, Healy put the California data set up on Github, along with the R code for his plots. So with that, I wish you happy data mining. And remember, it’s still flu season, so probably go wash your hands right now.

]]>Bethany Brookshire, who wrote the Science News article, shared some more personal thoughts about it on her blog. She writes that we tend to attribute men’s success to their talent and women’s to their hard work. When combined with the perception that innate talent is necessary, and perhaps sufficient, for success in certain fields, this idea reinforces the stereotype that women are more suited for some fields than others.

It’s no surprise that mathematics is one of the fields where the genius myth is most pervasive. Mathematicians used to actively cultivate the idea of mathematics as a hallowed priesthood to which only a few are called. Paul Halmos wrote, “To be a scholar of mathematics you must be born with talent, insight, concentration, taste, luck, drive and the ability to visualize and guess.” As I read through that sentence, the idea that our innate mathematical talent is crucial feels sillier and sillier. Are any of us born with insight? Concentration? Taste? We might be born with some amount of aptitude for those things, but we cultivate them over time in response to what our family, friends, and society say is valuable. Why do we think mathematical ability is different?

Cathy O’Neil says that the *Science* study resonates with her personal experiences. She writes,

It’s just one study, and the response rate was small, so the word is not final. Even so, I think this proves that we should look into this more, gather more evidence, and see where it leads.

Personally, I have already spent quite a bit of time trying to deal with this very problem in mathematics. For example, I’ve explained before how I deliberately teach kids an introduction to proof that emphasizes practice over the silly and distracting concept of having an innate gift. It works, and it’s more fun too, for both men and women.

One of the common arguments about men’s and women’s aptitudes in mathematics is that while the mean and median of mathematical ability, and many other traits, may be the same for men and women, there are more men who are outliers in both directions. Therefore jobs that require outstanding work—such as tenured mathematics professor at a top university—go disproportionately to men. Izabella Laba is blunt in her assessment of that position.

From my professional point of view as a mathematician, here’s how I see this argument. Take a fluid, complex, multidimensional quality such as “math skills.” (Or such as “propensity for criminality,” for that matter.) Assume that this quality can be uniquely quantified, on some scale that covers all types and ranges of “math ability.” Assume further that the resulting distribution is described by a bell curve, because why not. Condition on events of probability practically zero, assume that the same generic, first-approximation model is still accurate on a scale and in a range where it was never meant to be applied, and draw your conclusions about women faculty at R1 universities.

Furthermore, the problem is even deeper than the bell curve outlier idea:

We’ve lived for centuries in a culture that has discouraged women from focused achievement–and by “discouraged” I mean “actively prevented”–directing them towards unassuming mediocrity instead. We’ve lived in a culture that has propagated the stereotype of a woman as an all-round dilettante, while encouraging men possessed of any discernible talent to pursue it to distinction.

The perception that math success is based on innate talent is hard to eradicate, but I am encouraged that today, people like O’Neil and Terry Tao emphasize the importance of hard work and enjoyment over native intelligence to making progress in mathematics. I hope that by changing our emphasis, we can encourage a more diverse group of future mathematicians to excel.

Update: I wrote about the media’s role in the genius myth at Roots of Unity, my Scientific American blog.

]]>Certain equations or concepts strike us as beautiful, stunning even. As she walked amongst the aquatints on the wall of Yale Art Gallery’s latest exhibit entitled “Concinnitas”, Jen Christiansen posed the title question of her blog post: “Math is Beautiful, But is it Art?”. Concinnitas means “an elegant or skillful joining of several things”, and its Latin origin made me think about the Latin origins of the word “art”. In Latin, “artem” refers to a practical skill (think “art of blacksmithing”), and also “artus”, meaning “to join” (for instance, joining disparate pieces of information or matter to form a coherent whole, like a sculpture, or a completed puzzle). We now also think of art as stemming from a spark of inspiration that calls the artist to create. In each of these manners, I see the creation of mathematics as an art. Jen Christiansen, the art director of information graphics at Scientific American, also leaned in this direction as she considered the exhibit which consists of responses from mathematicians and scientists to a question: “What is your most beautiful mathematics expression?” The responses came from venerable mathematicians and physicists: Michael Atiyah, Enrico Bombieri, Simon K. Donaldson, Freeman Dyson, Murray Gell-Mann, Richard Karp, Peter Lax, David Mumford, Stephen Smale and Steven Weinberg. You can see their “answers” online at the website of the Greg Kucera Gallery, which is also on the list of galleries exhibiting this portfolio of prints. The idea for the portfolio came from Bob Feldman of Parasol Press, and it was curated by Daniel Rockmore, a math professor at Dartmouth. My favorite was Simon Donaldson’s. Most recently, Donaldson won one of the inaugural Breakthrough Prizes in Mathematics, and his expression is Ampere’s Law. Ampere’s law, which expresses some of the ideas with which a Physics undergraduate might be familiar, implies some connections between topology and physics with the knotting of the “wire” through which “current” is flowing, and with the physical incarnation of the mathematical equation.

It should come as no surprise that certain individuals are working to make the connections between art and mathematics more apparent to the general population, as evidenced by the recently minted acronym S.T.E.A.M. (Science, Technology, Eduation, Art, and Mathematics). For example, in a recent interview (January 21^{st}) of one the recent Fields medalists, Manjul Bhargava, at NDTV, Dr. Bhargava discusses connections between the Indian musical instrument Tabla and mathematics. He gives an example of the need of a musician to know all possible methods of partitioning eight beats into one- and two-beat sections. Dr. Bhargava uses this as one example of a way to teach mathematics in a more appealing manner that is less “robotic”. Another recent example of the intersection of mathematics and art in education is art teacher Ben Volta’s work with middle schoolers to create a giant mural inspired by the 1970’s video “Powers of Ten”.

However, this exhibit really turns the question away from finding intersections between math and art, away from how mathematics influences art or how art influences mathematics, and asks the more direct question of whether mathematicians are artists. What do you think?

]]>Journalist A.K. Whitney is a “math phobe turned math phile,” according to her Twitter bio. Growing up, she enjoyed science, but bad experiences in middle and high school math classes kept her from pursuing a STEM major. A few years ago, she enrolled in a pre-algebra class at a local community college and started her math education basically from scratch. When a friend asked her why, she said, “I got sick of believing I suck at math.” In a series called Mathochism, she writes about her experiences working her way up through calculus. I first encountered the series on Medium, where she is posting an installment every Monday, Wednesday, and Friday, but it is also available on her blog. She also wrote an article for Cosmo about why and how she overcame her fear of math.

Another perspective on learning math as an adult comes from Jennifer Ouellette’s series that eventually spawned The Calculus Diaries. Ouellette is a well-known science writer who focuses on physics, but she had never taken calculus. While she finds conceptual explanations helpful, she writes,

I must confess that on the rare occasions when I’ve bothered to put in the effort to understand a basic euqation or two–and they must be basic, given my functional innumeracy–it has deepened my grasp of the essential concepts in ways I don’t entirely undrstand, yet can’t deny. It’s like some final piece clicked into place that I never even knew was missing.

It’s really interesting to see the points of view of students who start without a strong math background or confidence but genuinely want to learn—and learn to like—the subject. We sometimes assume that students in introductory math courses just want to fulfill a university requirement and don’t really care about learning the material. Those students do exist, and we probably won’t really be able to reach them, but it’s valuable for us to see what makes it easier or harder for a motivated student to make progress. For Whitney, teachers and textbooks are important, but she also writes about broader issues: male dominance in classrooms, our society’s attitude towards women STEM majors, and the myth that you have to be a genius to be good at math.

Her comments about her teachers, from the “dapper professor” of pre-algebra to the “calculus dementor,” are interesting because we get only one side of the story. Sometimes I try to fill in the gaps and figure out what might have been going on from the instructor’s perspective. In a post called Show Your Work, Whitney expresses her frustration at worked examples that skip steps. She writes,

It’s particularly galling when an instructor skips steps on examples in lectures (and so does the book in its ridiculously expensive solutions manual that promises to solve all the odd problems yet leaves out a third of them), then expects me to “show my work,” all my work, and even takes points off for paraphrasing a little on a definition or for not writing f(x) on every step.

I wish I knew specific examples of what steps were omitted and what definitions were paraphrased. I’m sure the instructor thought he or she was doing the examples fully and that his or her rules about how work had to be shown were clear. And what seemed like “paraphrasing a little on a definition” to Whitney may have changed the meaning of the definition. It’s probably impossible to avoid those problems in any class, but it’s good to remember that students who make mistakes like that aren’t being sloppy or lazy. It’s just hard for students to evaluate their own work and understanding.

Unfortunately, Whitney’s calculus class ended on a sour note. But this time, she left with a different attitude than she had in middle school. She writes,

But unlike previous bad experiences, this didn’t sour me on math. Nor did it take away from my interest in learning more calculus, which was actually one of the most satisfying chapters in my short math career.

Yep, I really love calculus.

In 2013, she took a calculus MOOC to solidify and expand on her previous calculus experiences, and for her, it was a good fit. It gave her more motivation than just sitting at home with a calculus book had, but she had the flexibility to choose when to watch lectures or take quizzes. She ended the MOOC on a high note.

]]>At the end, I was tired but very happy. The course confirmed that I really did learn calculus, and that I wasn’t wrong to love it.

And my grade? It doesn’t matter, but I wound up with an 89.3 percent. My B streak continues, and illustrates what I have learned about my math ability: It will never come easily, but I can understand it. I can appreciate it. I can learn it.

I don’t suck at math.